We introduce a prior distribution for the number of components of a mixture model. The prior considers the worth of each possible mixture, measured by a loss function with two components: one measures the loss in information in choosing the wrong mixture and one the loss due to complexity.

On a loss-based prior for the number of components in mixture models / Liseo, Brunero; Villa, Cristiano; Grazian, Clara. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - 158(2020).

On a loss-based prior for the number of components in mixture models

Liseo Brunero;
2020

Abstract

We introduce a prior distribution for the number of components of a mixture model. The prior considers the worth of each possible mixture, measured by a loss function with two components: one measures the loss in information in choosing the wrong mixture and one the loss due to complexity.
2020
Mixture models; Bayesian inference; Default priors; Loss-based priors; Clustering
01 Pubblicazione su rivista::01a Articolo in rivista
On a loss-based prior for the number of components in mixture models / Liseo, Brunero; Villa, Cristiano; Grazian, Clara. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - 158(2020).
File allegati a questo prodotto
File Dimensione Formato  
Liseo_loss-based_2020.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 361.55 kB
Formato Adobe PDF
361.55 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1648515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact